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Reagents which can cleave nucleic acids under mild condi- Table 1. DNA-Photocleavage Activities of Vanadium(¥Peroxo
tions have potential applications as DNA- and RNA-sequencing Complexes Irradiated at 365 nm in an Aqueous Medium at pH 7.5

reagents as well as antitumor and antiviral drugs. Recently, a cleavage  Amax NM

number of redox-active transition-metal-based nucleases have activity (% (e, Mf

been shown to cleave DNA and/or RNA with photoactivation complex at 1 mM concn conversiory _cm ) ref
or in the presence of cofactotd. Phenanthrenequinonediimine ~ NHa[VO(O2)x(bpy)I-4H:0 50 354 (598) 23
complexes of Rh(lll) are known to recognize and photocleave Hﬁ%&é%giﬁ’gggﬁmzo gg gzj Egi% ;g
DNA in a sequence-specific manretand Fe(ll)-EDTA * its NHA[VO(O2)>(phen)}2H,0 99 327 (1390) 23
methidium-tethered complédand bis(1,10-phenanthroline)Cu  NH,[VO(O2)x(Mezphen)}2H.0 95 328 (1500) 24
utilize hydrogen peroxide to generate hydroxyl radicals to effect NHaVO(Oz)(Mesphen)}5H.0 99 331 (2640) 24
the oxidative cleavage of DNA and RN¥. Thus, it is NH4[VO(02)2(NOzphen)}2H;0 99 326 (6340) thvlforkc
conceivable that transition-metal complexes with peroxide k. [vo(0,),(ox)]-2Hz0 (at5 mM) 6.2 328 (681) 23
ligands are likely to be effective nucleases as well. Several K[VO(0;)2(H20);]:2H.0 9.0 317 (720) this ”
vanadium(V)-peroxo complexes have been shown to exhibit . wor
antileukemic activities. More recently, Hiort et al. reported ﬁiwgggggﬁgﬁfzﬁfg 2;5 ﬁg gﬁ; %2
the DNA-photocleavage activities of two diperoxovanadium-  Hvo(0,)(pic)] 30 434 (311) 24

(V) complexes with 1,10-phenanthroline and 4,7-dimethyl-1,10- K[VO(O_)(dipic)(Hz0)]-2H,0 9.1 430 (456) 27
phenanthroline as ancillary ligan8isin this work, we have [VO(O2)(terpy)(H0)ICIO4Hz0 23 458 (373§ this
examined the DNA-photocleavage activities of 15 vanadium- NH4[VO(O,)(ida)]-2H.0 9.2 420 (363) Z;V one

(V)—peroxo complexes. A mechanism for their photocleavage S )
activities, which involves singlet oxygen produced from the @ The DNA-cleavage activity is expressed in terms of the percentage

. . . : conversion of the supercoiled or covalently-closed circular (ccc)
photolysis of these complexes, observed for fingt time in conformer to the open-circular (oc) and/or linearized conformers of

vanadium(V), is Proposed. _ the plasmid DNA (pBluescript). The % conversiota(+ 5%) is
Using a plasmid DNA relaxation asséyhe photocleavage calculated using

activities of these vanadium(Mperoxo complexes were mea-

sured. The quantitative DNA-photocleavage activities, together % Conversior= 1 — [ccck
with the absorption spectral parameters, of the complexes are [cccl
summarized in Table 1. where [ccc) is its concentration in the control and [ccd} its

From among the various active complexes, the [V@4£O concentration in sample after incubating at ambient temperature for
(bpy)]” anion was chosen for a detailed mechanistic study. Sincetime t. b References for syntheses and structures of the complexes.

e (ieversbe) oxidation polenls3SCE) ofhese com | 11658 SmPeres vt prepred b s, Ther v and tcres
plexes at pH 7 range from 0-7L.0 V1° a direct oxidation of

contained 7.5% acetonitrile required for easy dissolution of the complex.
¢ The spectrum was obtained in acetonitrile.

T Abbreviations: bpy= 2,2-bipyridine; Mebpy = 4,4-bipyridine; phen
= 1,10-phenanthroline; Mphen= 4,7-dimethyl-1,10-phenanthroline; Me

phen= 3,4,7,8-tetramethyl-1,10-phenanthroline; f@en= 5-nitro-1,10- DNA by these complexes is thermodynamically unlikely. A

phenanthroline; ox= oxalate; cit= citrate; nta= nitrilotriacetate; pic= reactive oxygen species, such as the hydroxyl radical and singlet

pérldln%Z-carboxxélate;tdltplt? _pyrldlr!e-2,6-,dlgNarsoEyl?;e; ttﬁrp‘f telrfpyj oxygen, is more likely to be the species responsible for the DNA

riaine; laa= iIminodiacetate, pipes piperazinen, '-bis(2-ethanesulfonic PP H H H i

acid): BPHA= N-benzoyIN-phenylhydroxylamine. scission. Working on thls_hypothe5|s,.\(ve conducted experi
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of the photolysis product was shown to be identical to the
spectrum obtained by dissolving authentic ;@3 in the same
buffer solution, therefore identifying the metavanadate(V) anion,
VO3, as the vanadium product.

On the basis of the results obtained, we propose the

Field (Gauss) mechanism shown in Scheme 1 for the photolysig{ = 365

Figure 1. EPR spectra of a solution containing 10 mM of the M) of the [VO(Q)2(bpy)]™ anion, at pH 7.5.  In this proposed
[VO(O,)(bpy)]” anion and 300 mM 2,2,6,6-tetramethyl-4-piperidone mechanism, the two electrons from the photooxidation of the
(TMP) at pH 9.0 as a function of photoirradiation time. The samples peroxo ligand are placed on the metal in the form of a V(III)
were irradiated fo5 s ipteryals for a total of 30 s using a 500 W high-  intermediate. Since no explicit attempts have been made to
pressure Hg lamp (Oriel) filtered through a water bath and a-280 detect any V(lIl) species formed during the course of photolysis,

nm bandpass filter. Spectra were collected at room temperature usin P :
the following parameters: scan rate, 50 G/min; time constant, 32 ms; e cannot rule out the possibility that the two electrons are in

microwave frequency, 9.514 GHz; microwave power, 5 mW; modula- the Dipyridine ring system. We also do not know at which step
tion amplitude, 2.5 G; modulation frequency, 100 kHz. The figure shows the ancillary ligand E-L comes off from the complex.

nitroxide formation corresponding to the presence of singlet oxygen  Recent studies have shown that exposure of DN¥Oideads
after 0, 5, 10, 15, 20, 25, and 30 s of irradiation. The presence of a to base damage and strand breaks, both of which occur
small amount of nitroxide before irradiation is the nitroxide impurity specifically at the guanine residu¥s20 While the chemistry
present in the commercially available TMP. of the 10,-mediated modification of the guanine base has been
guite well-addresset};?2the mechanism of DNA strand breaks
without alkali- or base-treatment is still unclédr.Finally,

3370 3400 3430

the notion that singlet oxygen is involved in the DNA-

photocleavage Process. Furthermore, no diminutipn of DNA- outstanding questions remain in this study. (1) Is the DNA
photocleavage activity was observed when experiments Were oo aqe sequence-specific or site-specific? (2) What are the
carried out under quasi-anaerobic conditions, indicating that o damage products? Are they consistent with tht@g

dissolved oxygen is not the source of singlet oxygen and \qqiated damage products (i.e., guanine-specific oxidation

photosensitization is not responsible for the observed activity. products such as 8-oxo-7,8-dihydrbe2oxyguanosine and 4,8-
Photolysis-EPR spin-trapping experiments were conducted gihydro-4-hydroxy-8-oxo-2deoxyguanosine) found in type Il

to provide further support that singlet oxygen is the reactive (singlet oxygen) photosensitization reacticRg? Further study

species. Using 2,2,6,6-tetramethyl-4-piperidone (TMP) as a sping 5qdress these issues and other mechanistic details is currently
trap, we were able to detect the formation of 2,2,6,6-tetramethyl- underway.
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